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Dune-MMesh is an implementation of the DUNE [BBD+21] grid interface that is tailored for numerical applications
with moving physical interfaces. The implementation based on CGAL [TCP20] triangulations supports two and three
dimensional meshes and can export a predefined set of facets as a separate interface grid. In spatial dimension two,
arbitrary movement of vertices is enhanced with a remeshing algorithm that implements non-hierarchical adaptation
procedures. We present a collection of Examples based on the python bindings of the discretization module dune-fem
[DNK+20].

1 Introduction

In many technical applications, in particular in the field of fluid dynamics, comparably thin physical interfaces can have
a large impact on the overall behavior of a modeled system. For instance, interfaces occur as separating layer between
fluid phases in multiphase flows, in fluid- structure interaction and fluid-solid phase change. Even fractures in porous
media can be modeled by lower-dimensional surfaces. Oftentimes, these interfaces move over time and the processes
become a kind of free-boundary value problems.

The grid implementation Dune-MMesh aims at providing numerical capabilities for grid based methods to model
interface-driven processes within the DUNE framework. Essentially, it consists of two things:

1. A triangulation based on CGAL where a set of facets is considered as interface and

2. the possibility to re-mesh the triangulation when necessary.

These two ingredients enable many new possibilities within the DUNE framework. First, the representation of some
grid facets as an interface makes Dune-MMesh a useful tool for the implementation of mixed-dimensional models.
Second, the inevitable non-hierarchical adaptation complements the existing grid implementations within the DUNE
framework and allows for unprecedent flexibility of grid adaptation.

More details about the concepts behind Dune-MMesh are described in Concepts. The procedure to install and use
Dune-MMesh is specified in Installation. You can find a collection of examples of what can be done with Dune-
MMesh based on the discretization module Dune-Fem in Examples. The programming interface is described in the
sections Python and C++.

2 Installation

In order to install and use Dune-MMesh you need a recent C++ compiler (at least C++17 compatible), Python (3.7 or
later), CMake (3.13 or later) and Boost (1.66 or later).

There are two ways of installing Dune-MMesh.
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2.1 Using Pip

The easiest way to install Dune-MMesh is using pip and the package uploaded to PyPI.

1. Activate a virtual environment (strongly recommended).

python3 -m venv dune-env
source dune-env/bin/activate

2. Download and build Dune-MMesh and its dependencies.

pip install dune-mmesh

Note that this takes some time in order to compile all dependent Dune modules.

2.2 From Source

You can install Dune-MMesh from source to get full access to the source code. It also enables git support if you want
to contribute.

1. Clone the Dune modules dune-common, dune-geometry, dune-grid, dune-istl, dune-localfunctions, dune-alugrid
dune-fem and dune-mmesh.

git clone https://gitlab.dune-project.org/core/dune-common.git
git clone https://gitlab.dune-project.org/core/dune-geometry.git
git clone https://gitlab.dune-project.org/core/dune-grid.git
git clone https://gitlab.dune-project.org/core/dune-istl.git
git clone https://gitlab.dune-project.org/core/dune-localfunctions.git
git clone https://gitlab.dune-project.org/extensions/dune-alugrid.git
git clone https://gitlab.dune-project.org/dune-fem/dune-fem.git
git clone https://gitlab.dune-project.org/samuel.burbulla/dune-mmesh.git

2. In a virtual environment (strongly recommended, see above) build the modules and install the python bindings.

./dune-common/bin/dunecontrol --opts=dune-mmesh/cmake/config.opts all

3. Activate the DUNE internal virtual environment.

source ./dune-common/build-cmake/dune-env/bin/activate

Remark that a dune-py module will be generated automatically that is necessary to perform the just-in-time compilation
of DUNE python modules.

3 Concepts

There are a few concepts behind the implementation of Dune-MMesh that we shall describe in more detail. The
concepts can be split into three main parts: CGAL Wrapper, Interface Grid and Moving Mesh.
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3.1 CGAL Wrapper

In its core, Dune-MMesh is a wrapper of CGAL Triangulations inR𝑑, 𝑑 = 2, 3, that implements the Dune grid interface.
Therefore, it is essential to understand how CGAL triangulation objects are translated into Dune entities.

First of all, a CGAL triangulation is a set of simplicial cells and vertices. Each cell gives access to its 𝑑 + 1 incident
vertices and its 𝑑+1 adjacent cells. Each vertex gives access to one of its incident cells. The 𝑑+1 vertices are indexed
with 0, 1, . . . , 𝑑 in positive orientation being defined by the orientation of the underlying Euclidian space R𝑑. The
neighbors of a cell are also indexed with 0, 1, . . . , 𝑑 in such a way that the neighbor is opposite to the vertex with the
same index. Facets are not explicitly represented: a facet is given by the pair of a cell 𝑐 and an index 𝑖. Here, the facet 𝑖
of cell 𝑐 is the facet of 𝑐 that is opposite to the vertex with index 𝑖. Remark that a facet has two implicit representations.
For 𝑑 = 3, edges are represented by triples of a cell 𝑐 and two indices 𝑖 and 𝑗 that indicate the two vertices of the
edge. In order to match the Dune grid interface we have to follow the reference element numbering. Fortunately,
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Fig. 1: CGAL representation of cells and differing Dune numbering in brackets.

the vertex numbering of cells can be retained. However, each facet 𝑖 of the CGAL representation corresponds to the
codim-1 subentity 𝑑− 𝑖 in the Dune reference element. For the representation of Dune intersections we can directly use
CGAL’s cell-index representation of facets which is already equipped with an orientation. With this reference mapping
all geometry and sub-entity objects of the Dune grid interface can be specified.

Various iterators of CGAL triangulations can directly be used to construct the Dune grid range generators. For instance,
the element iterator coincides with the finite_faces_iterator or finite_cells_iterator. Additional (non-
standard Dune) iterators could be added easily, e.g. incidentElements or incidentVertices of a vertex.

The main large objects that have to be implemented are the index and id sets. For this purpose, we define ids of entities
as follows. At creation, each vertex is equipped with a unique integer id. Each higher dimensional entity’s id is defined
by the sorted tuple of corresponding vertex ids.

As CGAL vertices and cells allow to append data (called: info) to the objects, we can store and access the vertex ids
directly within the vertex objects. Entity indices are consecutively distributed at grid creation (or after adaptation) and
also can be stored in the corresponding cell or vertex info. For entities of codimensions different than 0 and 𝑑, an
id-index mapping is used.

The geometrical representation of entities that are not intrinsically CGAL entities (i.e., codimensions 1, ..., 𝑑 − 1) is
made unique by an ascending order of vertex ids. In additon, this prevents twists of intersections and we obtain a twist
free grid implementation.

We extend the above described concepts of wrapping the CGAL triangulation to export a set of facets as Interface Grid.

3



3.2 Interface Grid

Consider a domain Ω ⊂ R𝑑, 𝑑 ∈ {2, 3}, that includes a (𝑑− 1)-dimensional interface Γ ⊂ Ω. We assume the domain
is triangulated conforming to the interface Γ. Let us denote this triangulation by 𝒯 and the set of facets by ℱ . Due

Ω

Γ

Fig. 2: A domain with a T-shaped interface and an example for a conforming triangulation.

to conforming meshing, there exists a subset of facets ℱΓ ⊂ ℱ that belong to the interface Γ. Therefore, these facets
in ℱΓ can also be interpreted as a triangulation of a surface. We call this surface triangulation the interface grid and
denote it by 𝒯Γ.

Dune-MMesh features a second implementation of the Dune grid interface that represents the interface triangulation
𝒯Γ. Therefore, facets have to be marked as belonging to the interface - usually this is done when parsing a .msh file.

The interface grid can be used like any other Dune grid as it implements all necessary functionality.

A codim-0 entity of the interface grid is represented by a CGAL cell-index pair as used for the codim-1 entities of the
wrapper implementation. This representation is made unique by taking the representation where the cell has the lower
index - which is also considered to be the positive side of the facet.

All subentity objects can be generated by this representation using the right indexing of vertices. The geometry rep-
resentations and element ids are made unique by ascending order of vertex ids as it is done in the full-dimensional
wrapper implementation.

For iteration, CGAL’s finite_edges_iterator or finite_facets_iterator is used skipping all facets not be-
longing to the interface. Intersections and neighbor relationships are obtained by CGAL’s incident_edges or
incident_facets iterators. Index sets are implemented by mappings of vertex ids.

The interface grid also supports networks. For this purpose, the intersection iterator returns all common intersections
with adjacent cells. Note that this can be more than one for a single codim-1 subentity. However, the intersection’s
outer normal is always independent of the neighbor entity. Each bulk grid intersection can be identified belonging to

Fig. 3: Outer normals at junctions.

the interface or not. It is also possible to convert bulk intersections to interface grid elements and vice versa as the
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underlying representation is the same. When converting an interface grid entity to a bulk intersection, Dune-MMesh
returns the intersection as seen from the cell with the lower index.

3.3 Moving Mesh

Most interface driven-problems have time-dependent interfaces Γ = Γ(𝑡). Therefore, Dune-MMesh features capabili-
ties of moving and remeshing in spatial dimension two.

Note: The remeshing feature is not (yet) supported in spatial dimension three because the removal of a vertex is not
offered by the underlying CGAL Triangulation_3 class. In fact, it could appear that the region formed by its adjacent
tetrahedrons is an instance of the untetrahedralizable Schönhardt’s polyhedron. In this case, the removal of the vertex
might be impossible without rebuilding the whole triangulation.

3.3.1 Moving Vertices

Dune-MMesh allows the movement of interface vertices (or all grid vertices) by a predescribed movement.

For this, we assume that movement is given by the shift of vertices. This movement can be performed by simply
changing the coordinates of the vertices. Dune-MMesh provides the method moveInterface(shifts) that takes a
vector of shift coordinates indexed by interface vertex indices. A second method moveVertices(shifts) is available

Fig. 4: Moving the interface.

for moving all vertices of the triangulation that is indexed by bulk vertex indices.

Remark that moving vertices might lead to degeneration of the triangulation, i.e. cells can have non-positive volume.
To prevent that, Dune-MMesh is equipped with remeshing routines we describe in the following.

3.3.2 Adaptation

Adaption in DUNE is hierarchical by definition. Whenever a grid element is supposed to be refined, it is split into
smaller cells belonging to a higher level of the grid hierarchy. If all children in the highest refinement level of a grid
element are supposed to be coarsened, the children cells are put together to form a parent cell one level lower.

Hereby, the adaptation procedure is performed in two stages:

1. Mark: Grid elements are marked for coarsening or refinement.

2. Adapt: The elements are adapted due to their markers and discrete functions are restricted or prolongated.
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In Dune-MMesh, due to the moving mesh, non-hierarchic adaptation is inavoidable. However, we will try to follow the
general DUNE approach of adaptation as good as possible. For this reason, we similarily separate the adaptation into
two stages.

1. Mark

In advance of moving, two methods are provided for marking elements in a convenient way. First, the method

Fig. 5: Marking elements. Green: refine. Red: coarsen.

ensureInterfaceMovement(shifts) (respectively ensureVertexMovement(shifts)) can be called to prepare
Dune-MMesh for moving the vertices. The routine takes the vertex shifts as argument and marks presumbly degenerate
cells for coarsening. Hence, they will be somehow removed during adaptation.

The second method available for marking elements is markElements(). This method uses a default indicator that
marks elements depending on their current geometrical properties.

This indicator considers primarily maximal and minimal edge length and aims at an objective edge length between
ℎ𝑚𝑎𝑥 and ℎ𝑚𝑖𝑛.

• If an edge is longer than the maximum edge length ℎ𝑚𝑎𝑥, the cell will be marked for refine.

• If an edge is shorter than the minimum edge length ℎ𝑚𝑖𝑛, the cell will be marked for coarsening.

Additionally, if the ratio of longest to shortest edge is larger than 4, the cell is marked for coarsening. The number 4
occurs from the fact that we we will use bisection and a triangle where two edges are longer then ℎ𝑚𝑎𝑥 should not be
splitted into smaller triangles where an edge is shorter than ℎ𝑚𝑖𝑛.

Finally, a maximal radius ratio is taken into account to remove very ugly cells. Always coarsening has priority before
refinement because refinement would not remove ugly cells.

The minimal and maximal edge lengths ℎ𝑚𝑎𝑥 and ℎ𝑚𝑖𝑛 are initialized automatically when constructing a mesh by
determining the range of edge lengths occuring the grid.

Remark that markElements() also checks the elements of the interface grid. Therefore, the interface will be refined
and coarsened as well if edges of the interface get too long or too short.

Note: The methods ensureInterfaceMovement(shifts) and markElements() are just convenience methods.
Instead, one can also use a proprietary procedure marking elements manually, or one can insert and remove vertices
directly using removeVertex(vertex) and refineEdge(element, edgeIndex).
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2. Adapt

After marking elements the adapt() routine performs the actual adaptation process. The adaptation is performed by
insertion and removal of points.

Fig. 6: Inserting and removing points.

• In each element that is marked for refinement the center of the longest edge is interserted, i.e. refinement is done
via bisection.

• In all elements marked for coarsening, one vertex is removed. Here, the vertex incident to the shortest edges of
the cell is chosen, but we give priority on non-interface and non-boundary vertices.

Fig. 7: Connected components.

When a vertex is removed, the resulting star-shaped hole is re-triangulated with respect to the interface. Here, for the
purpose of projection, we introduce connected components. These are the minimal sets of cells from the triangulation
before adaptation that cover the same area as a set of cells in the triangulation afterwards. The easiest representatives
of these connected components are the incident cells when bisecting an edge and the incident cells to a vertex that
is removed. Though, we have to combine overlapping sets of these representatives. For a conservative projection of
discrete functions we compute a cut-set triangulation which enables evalutation with agglomerated quadrature rules
on triangles. Here, we prolong from an old cell onto such a cut triangle and prolong onto the new cell. This whole
projection is performed under the hood and just assumes that you use the callback adaptation in dune-fem. We use a
similar concept on the interface grid that enables projection of discrete functions on the interface.
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prolong restrict

Fig. 8: Non-hierarchic projection with cut-set triangulation.

4 Examples

We implemented a few examples to display how Dune-MMesh can be used in different contexts.

4.1 Coupling to the interface

This is an example of how to use Dune-MMesh and solve coupled problems on the bulk and interface grid.

4.1.1 Grid creation

We use the horizontal grid file that contains an interface Γ = [0.25, 0.75] × 0.5 embedded in a domain Ω = [0, 1]2.
Grid creation from a mesh file works as follow.

[1]: from dune.grid import reader
from dune.mmesh import mmesh
dim = 2
file = "grids/horizontal.msh"
gridView = mmesh((reader.gmsh, file), dim)
igridView = gridView.hierarchicalGrid.interfaceGrid

4.1.2 Solve a problem on the bulk grid

Let us solve the Poisson equation

−∆𝑢 = 𝑓 in Ω (1)

on the bulk grid. We use the manufactured solution �̂� = sin(4𝜋𝑥𝑦) and therefore apply the source term 𝑓 = − div(∇�̂�).
The weak form of the problem above reads ∫︁

Ω

∇𝑢 · ∇𝑣 𝑑𝑥 =

∫︁
Ω

𝑓𝑣 𝑑𝑥 (2)

for all corresponding test functions 𝑣. This can be implemented as follows.

[2]: from ufl import *
from dune.ufl import DirichletBC
from dune.fem.space import lagrange
from dune.fem.scheme import galerkin
from dune.fem.function import integrate

(continues on next page)
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(continued from previous page)

space = lagrange(gridView, order=3)
u = TrialFunction(space)
v = TestFunction(space)

x = SpatialCoordinate(space)
exact = sin(x[0]*x[1]*4*pi)
f = -div(grad(exact))

a = inner(grad(u), grad(v)) * dx
b = f * v * dx

scheme = galerkin([a == b, DirichletBC(space, exact)], solver=("suitesparse", "umfpack"))
uh = space.interpolate(0, name="solution")
scheme.solve(target=uh)

def L2(u1, u2):
return sqrt(integrate(u1.grid, (u1-u2)**2, order=5))

L2(uh, exact)

[2]: 5.628259763933402e-07

4.1.3 Solve a problem on the interface

We can solve similar problem on the interface Γ like

−∆𝑢Γ = 𝑓 in Γ (3)

with the weak form ∫︁
Γ

∇𝑢Γ · ∇𝑣Γ 𝑑𝑥 =

∫︁
Γ

𝑓𝑣Γ 𝑑𝑥 (4)

for all corresponding test functions 𝑣Γ.

[3]: ispace = lagrange(igridView, order=3)
iuh = ispace.interpolate(0, name="isolution")

iu = TrialFunction(ispace)
iv = TestFunction(ispace)

ix = SpatialCoordinate(ispace)
iexact = sin(0.5*ix[dim-2]*4*pi)
iF = -div(grad(iexact))

ia = inner(grad(iu), grad(iv)) * dx
ib = iF * iv * dx

ischeme = galerkin([ia == ib, DirichletBC(ispace, iexact)])
ischeme.solve(target=iuh)
L2(iuh, iexact)

9



[3]: 5.807742030532398e-08

We can use the plotPointData function to visualize the solution of both grids.

[4]: import matplotlib.pyplot as plt
from dune.fem.plotting import plotPointData as plot

figure = plt.figure(figsize=(3,3))
plot(uh, figure=figure, gridLines=None)
plot(iuh, figure=figure, linewidth=0.04, colorbar=None)

4.1.4 Couple bulk to surface

Dune-MMesh makes it possible to compute traces of discrete functions on Ω along Γ.

[5]: from dune.mmesh import trace
tr = avg(trace(uh))
ib = inner(grad(tr), grad(iv)) * dx

iuh.interpolate(0)
ischeme = galerkin([ia == ib, DirichletBC(ispace, avg(trace(uh)))])
ischeme.solve(target=iuh)
L2(iuh, iexact)

[5]: 4.266679479547976e-08

4.1.5 Couple surface to bulk

Similarly, we can evaluate a discrete function on Γ at the skeleton of the triangulation of Ω.

[6]: from dune.mmesh import skeleton

sk = skeleton(iuh)
b = avg(sk) * avg(v) * dS

uh.interpolate(0)
scheme = galerkin([a == b, DirichletBC(space, 0)])
scheme.solve(target=uh)

figure = plt.figure(figsize=(3,3))
plot(uh, figure=figure, gridLines=None)
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4.1.6 Compute jump of gradient of traces

We can use trace and skeleton within UFL expressions. This is useful when using jump and average operators, but also
to compute gradients and more. Together with the utility function normals, which returns the positive normal of the
underlying bulk facet, we can determine the orientation of the restricted values.

[7]: from dune.mmesh import normals
inormal = normals(igridView)
jmp = jump(grad(trace(uh)), inormal)

4.2 Moving and adapting

This is an example of how to move the interface and adapt the mesh.

We implement the finite volume moving mesh method presented in [CMR+18].

4.2.1 Grid creation

We use the vertical grid file that contains an interface Γ = 0.5 × [0, 1] embedded in a domain Ω = [0, 1]2. For this
example, we have to construct an adaptive leaf grid view and we will need to obtain the hierarchical grid object.

[1]: from dune.grid import reader
from dune.mmesh import mmesh
from dune.fem.view import adaptiveLeafGridView as adaptive
dim = 2
file = "grids/vertical.msh"
gridView = adaptive( mmesh((reader.gmsh, file), dim) )
hgrid = gridView.hierarchicalGrid
igridView = hgrid.interfaceGrid
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4.2.2 Problem

Let us consider the following transport problem.

𝑢𝑡 + div 𝑓(𝑢) = 0, in Ω × [0, 𝑇 ], (5)
𝑢(·, 0) = 𝑢0, in Ω (6)

where

𝑓(𝑢) = [1, 0]𝑇𝑢, (7)
𝑢0(𝑥, 𝑦) = (0.5 + 𝑥)𝜒𝑥<0.5. (8)

Further, the interface is supposed to move with the transport speed in 𝑓 , i.e. 𝑚 = [1, 0]𝑇 .

[2]: from ufl import *
from dune.ufl import Constant

t = 0
tEnd = 0.4
dt = 0.04

def speed():
return as_vector([1.0, 0.0])

def movement(x):
return as_vector([1.0, 0.0])

def f(u):
return speed() * u

def u0(x):
return conditional(x[0] < 0.5, 0.5+x[0], 0.0)

def uexact(x, t):
return u0( x - t * speed() )

4.2.3 Finite Volume Moving Mesh Method

We use a Finite Volume Moving Mesh method to keep the discontinuity sharp. It can be formulated by∫︁
Ω

(𝑢𝑛+1|𝑑𝑒𝑡(Ψ)| − 𝑢𝑛)𝑣 𝑑𝑥 + ∆𝑡

∫︁
ℱ

(︀
𝑔(𝑢𝑛+1, 𝑛) − ℎ(𝑢𝑛+1, 𝑛)

)︀
[[𝑣]] 𝑑𝑆 = 0 (9)

where Ψ := 𝑥 + ∆𝑡𝑠 and s is a linear interpolation of the interface’s vertex movement m on the bulk triangulation.

The numerical fluxes 𝑔(𝑢, 𝑛) and ℎ(𝑢, 𝑛) are assumed to be consistent with the flux functions 𝑓(𝑢) · 𝑛 and 𝑢𝑠 · 𝑛,
respectively.

[3]: from dune.fem.space import finiteVolume

space = finiteVolume(gridView)
(continues on next page)
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(continued from previous page)

u = TrialFunction(space)
v = TestFunction(space)

x = SpatialCoordinate(space)
n = FacetNormal(space)

uh = space.interpolate(u0(x), name="uh")
uh_old = uh.copy()

[4]: import numpy as np
from dune.geometry import vertex
from dune.mmesh import edgeMovement

def getShifts():
mapper = igridView.mapper({vertex: 1})
shifts = np.zeros((mapper.size, dim))
for v in igridView.vertices:

shifts[ mapper.index(v) ] = as_vector(movement( v.geometry.center ))
return shifts

em = edgeMovement(gridView, getShifts())
time = Constant(t, name="time")

def g(u, n):
sgn = inner(speed(), n('+'))
return inner( conditional( sgn > 0, f( u('+') ), f( u('-') ) ), n('+') )

def gBnd(u, n):
sgn = inner(speed(), n)
return inner( conditional( sgn > 0, f(u), f(uexact(x, time)) ), n )

def h(u, n):
sgn = inner(em('+'), n('+'))
return conditional( sgn > 0, sgn * u('+'), sgn * u('-') )

[5]: from dune.fem.scheme import galerkin

tau = Constant(dt, name="tau")
detPsi = abs(det(nabla_grad(x + tau * em)))

a = (u * detPsi - uh_old) * v * dx
a += tau * (g(u, n) - h(u, n)) * jump(v) * dS
a += tau * gBnd(u, n) * v * ds

scheme = galerkin([a == 0], solver=("suitesparse","umfpack"))
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4.2.4 Timeloop

We need to set the "fem.adaptation.method" parameter to "callback" in order to use the non-hierarchical adap-
tation strategy of Dune-MMesh. Then, within the time loop, we can adapt the mesh according to the following strategy.

[6]: from dune.fem import parameter, adapt
parameter.append( { "fem.adaptation.method": "callback" } )
from dune.fem.plotting import plotPointData as plot
import matplotlib.pyplot as plt
fig, axs = plt.subplots(1, 5, figsize=(12,3))

i = 0
while t < tEnd:

hgrid.markElements()
hgrid.ensureInterfaceMovement(getShifts()*dt)
adapt([uh])

hgrid.moveInterface(getShifts()*dt)

em.assign(edgeMovement(gridView, getShifts()))
t += dt
time.assign(t)

uh_old.assign(uh)
scheme.solve(target=uh)

i += 1
if i % 2 == 0:

plot(uh, figure=(fig, axs[i//2-1]), clim=[0,1], colorbar=None)

4.3 Manual adaptation

This is an example of how to manually remove vertices and refine edges. With this, we can also implement anisotropic
refinement.
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4.3.1 Grid creation

We use the horizontal grid file that contains an interface Γ = [0.25, 0.75] × 0.5 embedded in a domain Ω = [0, 1]2.

[1]: from dune.grid import reader
from dune.mmesh import mmesh

from dune.fem.view import adaptiveLeafGridView as adaptive
from dune.fem import parameter, adapt
parameter.append( { "fem.adaptation.method": "callback" } )

dim = 2
file = "grids/horizontal.msh"

gridView = adaptive( mmesh((reader.gmsh, file), dim) )
hgrid = gridView.hierarchicalGrid

4.3.2 Interpolating some high order function

First, we interpolate some high order function.

[2]: from ufl import *
from dune.fem.space import dglagrange as functionspace

space = functionspace(gridView, order=5)
x = SpatialCoordinate(space)

uh = space.interpolate( sin(100*x[0]), name="uh")
uh.plot()
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4.3.3 Removing and inserting vertices

Then, we can insert and remove arbitrary vertices. We flag the vertices that should be removed and define points to be
inserted within cells. Points inserted in cells will be connected to the all of the cell’s vertices. Afterwards, we simply
call adapt.

[3]: from dune.common import FieldVector

for v in gridView.vertices:
if (v.geometry.center - FieldVector([0.3, 0.3])).two_norm < 0.1:

hgrid.removeVertex(v)

for e in gridView.elements:
if (e.geometry.center - FieldVector([0.7, 0.7])).two_norm < 0.2:

hgrid.insertVertexInCell( e.geometry.center )

adapt([uh])
uh.plot()

4.3.4 Refining edges

Another possibility to change the grid is to bisect specific edges. Hereby, we have to define an edge for bisection by a
corresponding intersection’s index.

[4]: def myRefine():
for e in gridView.elements:

for i in gridView.intersections(e):
if hgrid.isInterface(i):

hgrid.refineEdge(e, i.indexInInside)

for i in range(5):
myRefine()
adapt([uh])

uh.plot()
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4.4 Mixed-dimensional problem

A strength of Dune-MMesh is its application to mixed-dimensional problems. So, let us consider a mixed-dimensional
Burger’s equation on a domain with a lower-dimensional interface Γ that represents a physical domain with aperture
𝑑 > 0.

Find 𝑢, 𝑢Γ s.t

𝑢𝑡 + divF(𝑢) = 0, in Ω, (10)
(𝑑𝑢Γ)𝑡 + div 𝑐F(𝑢Γ) = [[F(𝑢) · n]], in Γ, (11)

where F(𝑢) = 1
2𝑢

2a with a = [1, 0]𝑇 and 𝑐 > 0 is a speed scaling for the interface problem.

We impose the interior boundary condition for the bulk problem

𝐹 (𝑢) = 𝐹 (𝑢Γ), on Γ, (12)
(13)

and consider inflow from left on the T-junction grid.

[1]: from dune.grid import reader
from dune.mmesh import mmesh

file = "grids/tjunction.msh"

gridView = mmesh((reader.gmsh, file), 2)
igridView = gridView.hierarchicalGrid.interfaceGrid

[2]: from ufl import *
from dune.ufl import Constant

d = Constant(0.01, name="d")
a = as_vector([1, 0])

(continues on next page)
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c = Constant(100, name="c")

def F(u):
return 0.5 * u**2 * a

def upwind(u_l, u_r, n):
return inner( conditional( inner(a, n) > 0, F(u_l), F(u_r) ), n )

dt = 0.25
tau = Constant(dt, name="tau")

4.4.1 Bulk problem

We use a finite volume space and define the UFL form of the bulk problem. Hereby, we used the interface indicator I
to distinguish between interface and non-interface facets.

[3]: from dune.fem.space import finiteVolume
space = finiteVolume(gridView)

u = TrialFunction(space)
uu = TestFunction(space)

x = SpatialCoordinate(space)
n = FacetNormal(space)

left = conditional(x[0] < 1e-6, 1, 0)
uD = 1

uh = space.interpolate(0, name="uh")
uhOld = uh.copy()

from dune.mmesh import interfaceIndicator
I = interfaceIndicator(igridView)

A = (u - uhOld) * uu * dx
A += tau * upwind(u('+'), u('-'), n('+')) * jump(uu) * (1-I)*dS
A += tau * upwind(u, uD, n) * uu * left * ds

4.4.2 Interface problem

Similarly, we define the UFL form of the interface problem.

[4]: ispace = finiteVolume(igridView)

u_g = TrialFunction(ispace)
uu_g = TestFunction(ispace)

n_g = FacetNormal(ispace)

uh_g = ispace.interpolate(0, name="uh_g")
(continues on next page)
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uhOld_g = uh_g.copy()

A_g = d * (u_g - uhOld_g) * uu_g * dx
A_g += tau * c * upwind(u_g('+'), u_g('-'), n_g('+')) * jump(uu_g) * dS

4.4.3 Coupling condition

The coupling condition can be incorporated using the trace and skeleton functionality.

[5]: from dune.mmesh import skeleton, trace, normals

u_gamma = avg(skeleton(uh_g))

A += tau * upwind(u('+'), u_gamma, n('+')) * uu('+') * I*dS
A += tau * upwind(u('-'), u_gamma, n('-')) * uu('-') * I*dS

traceu = trace(uh)
inormal = normals(igridView)

A_g -= tau * upwind(traceu('+'), u_g, -inormal) * uu_g * dx
A_g -= tau * upwind(traceu('-'), u_g, -inormal) * uu_g * dx

4.4.4 Monolithic solution strategy

Dune-MMesh provides coupled solution strategies to solve bulk and interface schemes together, either iteratively or
monolithically. Here, we choose the monolithicSolve method that implements a mixed-dimensional Newton method.

[6]: from dune.fem.scheme import galerkin
scheme = galerkin([A == 0])
scheme_g = galerkin([A_g == 0])

from dune.mmesh import monolithicSolve
def solve():

uhOld.assign(uh)
uhOld_g.assign(uh_g)
monolithicSolve(schemes=(scheme, scheme_g), targets=(uh, uh_g), verbose=False)

[7]: import matplotlib.pyplot as plt
from dune.fem.plotting import plotPointData as plot

fig, axs = plt.subplots(1, 4, figsize=(20,5))

for i in range(4):
solve()

plot(uh, figure=(fig, axs[i]), gridLines=None, clim=[0,1])
plot(uh_g, figure=(fig, axs[i]), linewidth=0.04, clim=[0,1], colorbar=None)
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4.5 Poroelasticity

We consider quasi-static linear Biot-equations with an interface Γ considered as thin heterogeneity with different per-
meability.

Find u, 𝑝, 𝑝Γ s.t

−div(K∇𝑝) = 0, in Ω, (14)
−div (𝜎(u) − 𝛼𝑝𝐼) = 0, in Ω, (15)

− div(KΓ∇𝑝Γ) = 𝑞Γ, in Γ, (16)
(17)

where

𝜎(u) = 𝜆 tr 𝜖(u)𝐼 + 2𝜇𝜖(u), (18)

𝜖(u) =
1

2

(︀
∇u + (∇u)𝑇

)︀
(19)

(20)

and 𝜆, 𝜇 > 0 are the Lamé constants, 𝛼 the Biot-Willis constant, K, KΓ bulk and interface permeability and 𝑞Γ a
source term.

We impose interior boundary conditions

𝑝 = 𝑝Γ, (21)
(𝜎(u) − 𝛼𝑝𝐼) · n = −𝑝Γn. (22)

and consider a T-junction as grid geometry.

[1]: from dune.grid import reader
from dune.mmesh import mmesh

file = "grids/tjunction.msh"

gridView = mmesh((reader.gmsh, file), 2)
igridView = gridView.hierarchicalGrid.interfaceGrid

[2]: from ufl import *
from dune.ufl import Constant

lamb = Constant( 1.2, name="lambda")
mu = Constant( 0.8, name="mu")

(continues on next page)
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alpha = Constant( 1, name="alpha")
K = as_matrix([[1e-4, 0], [0, 1e-6]])
K_g = Constant( 1, name="K_g")
q = Constant(1e-6, name="q")

epsilon = lambda u: 0.5 * (nabla_grad(u) + nabla_grad(u).T)
sigma = lambda u: lamb * div(u) * Identity(2) + 2 * mu * epsilon(u)

[3]: from dune.fem.space import dglagrange

# Bulk
space = dglagrange(gridView, dimRange=3, order=1)

trial = TrialFunction(space)
test = TestFunction(space)

p, ux, uy = split(trial)
pp, uux, uuy = split(test)

u = as_vector([ux, uy ])
uu = as_vector([uux, uuy])

x = SpatialCoordinate(space)
n = FacetNormal(space)
h = FacetArea(space)

left = conditional(x[0] < 1e-6, 1, 0)
right = conditional(x[0] > 1-1e-6, 1, 0)
bottom = conditional(x[1] < 1e-6, 1, 0)
top = conditional(x[1] > 1-1e-6, 1, 0)

solution = space.interpolate([0,0,0], name="solution")

# Interface
space_g = dglagrange(igridView, order=1)

p_g = TrialFunction(space_g)
pp_g = TestFunction(space_g)

x_g = SpatialCoordinate(space_g)
n_g = FacetNormal(space_g)
h_g = FacetArea(space_g)

solution_g = space_g.interpolate(0, name="solution_g")
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4.5.1 Interior Penalty Discontinuous Galerkin (IPDG) Scheme

We implement a mixed-dimensional Interior Penalty Discontinuous Galerkin (IPDG) scheme which directly allows for
a discontinuity along the interface. Including the penalty and consistency terms, we have the following weak form.

𝐴(u, 𝑝;v, 𝜙) :=

∫︁
Ω

(K∇𝑝) · ∇𝜙 𝑑𝑥−
∫︁
Ω

𝑞𝜙 𝑑𝑥 (23)

+

∫︁
ℱ∖ℱΓ

𝛽

ℎ
[[𝑝]][[𝜙]] − {{K∇𝑝 · n}}[[𝜙]] 𝑑𝑆 +

∫︁
ℱ𝑝

𝐷

𝛽

ℎ
(𝑝− 𝑝𝐷)𝜙−K∇𝑝 · n𝜙 𝑑𝑠 (24)

+

∫︁
ℱΓ

𝛽

ℎ
(𝑝+ − 𝑝Γ)𝜙+ −K∇𝑝+ · n+𝜙+ 𝑑𝑆 +

∫︁
ℱΓ

𝛽

ℎ
(𝑝− − 𝑝Γ)𝜙− −K∇𝑝− · n−𝜙− 𝑑𝑆 (25)

+

∫︁
Ω

(𝜎(u) − 𝛼𝑝𝐼) : 𝜖(v) 𝑑𝑥 +

∫︁
ℱ∖ℱΓ

𝛽

ℎ
[[u]][[v]] − ({{𝜎(u) − 𝛼𝑝𝐼}} · n) · [[v]] 𝑑𝑆 (26)

+

∫︁
ℱ𝑢

𝐷

𝛽

ℎ
(u− u𝐷) · v − ((𝜎(u) − 𝛼𝑝𝐼) · n) · v 𝑑𝑠 (27)

−
∫︁
ℱΓ

−𝑝Γ(v+ · n+) − 𝑝Γ(v− · n−) 𝑑𝑆 (28)

𝐴Γ(𝑝Γ;𝜙Γ) :=

∫︁
Γ

(KΓ∇𝑝Γ) · ∇𝜙Γ − 𝑞𝜙Γ + 𝛽(𝑝Γ − {{𝑝}})𝜙Γ 𝑑𝑥 (29)

+

∫︁
ℱΓ

𝛽

ℎΓ
[[𝑝Γ]][[𝜙Γ]] − {{KΓ∇𝑝Γ · nΓ}}[[𝜙Γ]] 𝑑𝑆 (30)

This weak form is implemented using UFL and Dune-MMesh’s trace and skeleton functionality as follows.

[4]: from dune.mmesh import skeleton, trace, interfaceIndicator

I = interfaceIndicator(igridView)
beta = Constant(1e2, name="beta")

p_gamma = avg(skeleton(solution_g))
tracep = trace(solution)[0]

# Pressure
a = inner(K * grad(p), grad(pp)) * dx
a -= q * pp * dx

a += beta / h * inner(jump(p), jump(pp)) * (1-I)*dS
a -= inner(avg(K * grad(p)), n('+')) * jump(pp) * (1-I)*dS

a += beta / h * (p - 0) * pp * (left+right) * ds
a -= inner(K * grad(p), n) * pp * (left+right) * ds

# Interface pressure
a_g = inner(K_g * grad(p_g), grad(pp_g)) * dx

(continues on next page)
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a_g -= q * pp_g * dx

a_g += beta / h_g * inner(jump(p_g), jump(pp_g)) * dS
a_g -= inner(avg(K_g * grad(p_g)), n_g('+')) * jump(pp_g) * dS

# Pressure is continuous at the interface
a += beta * (p('+') - p_gamma) * pp('+') * I*dS
a -= inner(K * grad(p('+')), n('+')) * pp('+') * I*dS

a += beta * (p('-') - p_gamma) * pp('-') * I*dS
a -= inner(K * grad(p('-')), n('-')) * pp('-') * I*dS

a_g += beta * (p_g - avg(tracep)) * pp_g * dx

# Displacement
sigma_p = lambda u, p: sigma(u) - alpha * p * Identity(2)
a += inner(sigma_p(u, p), epsilon(uu)) * dx

a += beta / h * inner(jump(u), jump(uu)) * (1-I)*dS
a -= dot(dot(avg(sigma_p(u, p)), n('+')), jump(uu)) * (1-I)*dS

a += beta / h * inner(u - as_vector([0,0]), uu) * (top+bottom) * ds
a -= dot(dot(sigma_p(u, p), n), uu) * (top+bottom) * ds

# Normal stress is -p at the interface
a -= -p_gamma * inner(uu('+'), n('+')) * I*dS
a -= -p_gamma * inner(uu('-'), n('-')) * I*dS

4.5.2 Monolithic solution strategy

We use the monolithicSolve to obtain the solution of the strongly coupled mixed-dimensional system.

[5]: from dune.fem.scheme import galerkin
scheme = galerkin([a == 0], solver=("suitesparse", "umfpack"))
scheme_g = galerkin([a_g == 0], solver=("suitesparse", "umfpack"))

from dune.mmesh import monolithicSolve
converged = monolithicSolve(schemes=(scheme, scheme_g), targets=(solution, solution_g),␣
→˓verbose=True)

i: 1 |x| = 1.19366078e+00 |f| = 1.72475757e-14
i: 2 |x| = 5.35261373e-09 |f| = 9.79676418e-15

[6]: import matplotlib.pyplot as plt
from dune.fem.plotting import plotPointData as plot

fig, axs = plt.subplots(1, 4, figsize=(20,5))
axs[0].set_title('Pressure')

(continues on next page)
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plot(solution[0], figure=(fig, axs[0]), gridLines=None)
axs[1].set_title('Displacement (x)')
plot(solution[1], figure=(fig, axs[1]), gridLines=None)
axs[2].set_title('Displacement (y)')
plot(solution[2], figure=(fig, axs[2]), gridLines=None)
axs[3].set_title('Displacement')
plot(solution, vectors=[1,2], figure=(fig, axs[3]), gridLines=None)

4.6 Two-phase Navier-Stokes with surface tension

Let’s consider the incompressible Navier-Stokes equations with two immiscible phases and surface tension to demon-
strate more complex usage of Dune-MMesh’s capabilities.

A domain Ω ⊂ R2 is assumed to be separeted into two phases Ω𝑖(𝑡), 𝑖 = 1, 2, by a sharp interface Γ(𝑡).

Find (𝑢, 𝑝) and Γ(𝑡) s.t.

(31)

𝜌𝑢𝑡 + ∇ · (𝜌𝑢⊗ 𝑢) + ∇ · 𝑇 (𝑢, 𝑝) = 0, in Ω𝑖(𝑡), 𝑖 = 1, 2, (32)
∇ · 𝑢 = 0, in Ω𝑖(𝑡), 𝑖 = 1, 2, (33)

[[𝑝]] = 𝜎𝜅 · 𝑛, on Γ(𝑡), (34)
[[𝑢]] = 0, on Γ(𝑡), (35)
�̇� = 𝑢, 𝑥 ∈ Γ(𝑡), (36)

𝑢(0) = 𝑢0, in Ω𝑖(0), 𝑖 = 1, 2, (37)
Γ(0) = Γ0. (38)

Here, 𝑇 (𝑢, 𝑝) := 𝑝𝐼−𝜇(∇𝑢+ (∇𝑢)𝑇 )) is the stress tensor, 𝜇𝑖, 𝑖 = 1, 2, are the dynamic viscositities and 𝜌𝑖, 𝑖 = 1, 2,
the densities of the two phases, 𝜎 is the surface tension and 𝜅 is the signed mean curvature of the interface times its
normal.

Now, we use Dune-MMesh to compute the dynamics of a droplet in a channel. Let us consider the circle grid.

[1]: from dune.grid import reader
from dune.mmesh import mmesh, trace, skeleton, domainMarker
from dune.fem.view import adaptiveLeafGridView as adaptive

dim = 2
file = "grids/circle.msh"

(continues on next page)
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gridView = adaptive( mmesh((reader.gmsh, file), dim) )
hgrid = gridView.hierarchicalGrid
igridView = adaptive( hgrid.interfaceGrid )

[2]: from ufl import *
from dune.ufl import Constant

mu0 = Constant( 1, name="mu0")
mu1 = Constant( 1, name="mu1")
rho0 = Constant( 1, name="rho0")
rho1 = Constant( 2, name="rho1")
sigma = Constant(0.03, name="sigma")

dt = 0.05
T = 12.0
tau = Constant(dt, name="tau")

4.6.1 Domain markers

The domain markers are initialized by the physical identifiers passed from the mesh file. We use them to interpolate
the phase’s parameters.

[3]: from dune.mmesh import domainMarker

dm = domainMarker(gridView)
mu = (1-dm) * mu0 + dm * mu1
rho = (1-dm) * rho0 + dm * rho1

[4]: from dune.fem.space import lagrange, dglagrange

pspace = dglagrange(gridView, order=1)
p = TrialFunction(pspace)
q = TestFunction(pspace)

uspace = dglagrange(gridView, dimRange=dim, order=2)
u = TrialFunction(uspace)
v = TestFunction(uspace)

ph = pspace.interpolate(0, name="ph")
uh = uspace.interpolate([0,0], name="uh")
uh1 = uspace.interpolate([0,0], name="uh1")
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4.6.2 Curvature

The mean curvature 𝜅 of the interface times its normal can be computed by solving∫︁
Γ

𝜅 · 𝜑 + ∇𝑥 · ∇𝜑 𝑑𝑆 = 0, in Γ(𝑡).

[5]: from dune.fem.space import lagrange
from dune.fem.scheme import galerkin

kspace = lagrange(igridView, dimRange=dim, order=1)
k = TrialFunction(kspace)
kk = TestFunction(kspace)

curvature = kspace.interpolate([0]*dim, name="curvature")

ix = SpatialCoordinate(kspace)
C = inner(k, kk) * dx
C -= inner(grad(ix), grad(kk)) * dx

kscheme = galerkin([C == 0])
res = kscheme.solve(curvature)

4.6.3 Moving

We will move the interface movement by evaluating the trace of the bulk velocity 𝑢.

[6]: import numpy as np

x = SpatialCoordinate(pspace)
n = FacetNormal(pspace)
h = FacetArea(pspace)

def getShifts():
mapper = hgrid.interfaceGrid.indexSet
shifts = np.zeros((igridView.size(dim-1), dim))
for e in igridView.elements:

for v in e.subEntities(dim-1):
x = e.geometry.toLocal(v.geometry.center)
shifts[ mapper.index(v) ] = trace(uh)(e, x)

return shifts
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4.6.4 Navier-Stokes equations

We implement a splitting scheme similar to the one presented in [GBK20].

[7]: from dune.mmesh import skeleton, interfaceIndicator
I = interfaceIndicator(igridView)

penu = Constant(1e6, name="penaltyu")
penp = Constant(1e6, name="penaltyp")

noslip = conditional(x[0] < 1e-6, 1, 0) + conditional(x[0] > 1-1e-6, 1, 0)

a1 = rho * inner(u - uh, v) / tau * dx
a1 += inner(grad(uh) * uh, v) * dx
a1 += inner(mu * grad(u), grad(v)) * dx

a1 += penu / h * inner(jump(u), jump(v)) * dS
a1 += dot(dot(avg(mu * grad(u)), n('+')), jump(v)) * dS
a1 += penu / h * inner(u - zero(dim), v) * noslip * ds
a1 += dot(dot(mu * grad(u), n), v) * noslip * ds

A1 = galerkin([a1 == 0], solver=("suitesparse", "umfpack"))

dirichlet = conditional(x[1] < 1e-6, 1, 0) + conditional(x[1] > 2-1e-6, 1, 0)
pD = conditional(x[1] < 1e-6, 1, 0)

a2 = inner(grad(p), grad(q)) * dx
a2 += penp / h * jump(p) * jump(q) * dS
a2 += dot(dot(avg(grad(p)), n('+')), jump(q)) * dS
a2 += penp / h * (p - pD) * q * dirichlet * ds
a2 += dot(dot(grad(p), n), q) * ds
a2 += inner(rho * div(uh1), q) / tau * dx

kappa = avg(skeleton(curvature))
a2 += penp / h * inner(sigma * kappa, n('+')) * jump(q) * I*dS

A2 = galerkin([a2 == 0], solver=("suitesparse", "umfpack"))

a3 = rho * inner(u - uh1, v) / tau * dx
a3 += inner(grad(ph), v) * dx

a3 += penu / h * inner(jump(u), jump(v)) * dS
a3 += penu / h * inner(u - zero(dim), v) * noslip * ds

A3 = galerkin([a3 == 0], solver=("suitesparse", "umfpack"))
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4.6.5 Timeloop

Finally, we specify the time iteration where we adapt the mesh and solve the schemes.

[8]: from dune.fem import parameter, adapt
parameter.append( { "fem.adaptation.method": "callback" } )
from dune.fem.plotting import plotPointData as plot
import matplotlib.pyplot as plt

N = 4
i = 0
fig, axs = plt.subplots(1, N, figsize=(16,6))

ph.interpolate(0)
uh.interpolate([0,0])
uh1.interpolate([0,0])

step = 0
t = 0
while t < T+dt:

hgrid.moveInterface( dt*getShifts() )

hgrid.markElements()
adapt([ph, uh, uh1, dm])
adapt([curvature])

A1.solve(uh1)
A2.solve(ph)
A3.solve(uh)

if int(N * t/T) > i:
plot(ph, figure=(fig, axs[i]), gridLines='black', linewidth=0.02)
plot(uh, figure=(fig, axs[i]), gridLines=None, vectors=[0,1])
i += 1

t += dt

All examples can be found in the directory doc/examples as IPython notebooks.
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Some examples for the creation of grid files can be found in Grid files.

4.7 Grid files

Some examples for the creation of grid files:

4.7.1 circle.geo

lc = 0.1;
lcf = 0.05;

// Domain
Point(1) = {0, 0, 0, lc};
Point(2) = {1, 0, 0, lc};
Point(3) = {1, 2, 0, lc};
Point(4) = {0, 2, 0, lc};

// Points of circle
Point(5) = {0.5, 0.5, 0, lcf};
Point(6) = {0.5, 0.7, 0, lcf};
Point(7) = {0.3, 0.5, 0, lcf};
Point(8) = {0.5, 0.3, 0, lcf};
Point(9) = {0.7, 0.5, 0, lcf};

// Domain outline
Line(1) = {1, 2};
Line(2) = {2, 3};
Line(3) = {3, 4};
Line(4) = {4, 1};

// Interface outline
Ellipse(5) = {6, 5, 7};
Ellipse(6) = {7, 5, 8};
Ellipse(7) = {8, 5, 9};
Ellipse(8) = {9, 5, 6};

Curve Loop(1) = {5:8};
Curve Loop(2) = {1:4};

Plane Surface(0) = {2,1};
Plane Surface(1) = {1};
Physical Surface(0) = {0};
Physical Surface(1) = {1};

Physical Curve(10) = {5:8};

This file can be meshed using gmsh -2 -format msh2 circle.geo.
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Fig. 9: circle.msh

4.7.2 horizontal.py

# A rectangle grid with a horizontal centered interface

name = "horizontal.msh"
h = 0.02
hf = h

import gmsh
gmsh.initialize()
gmsh.option.setNumber("General.Verbosity", 0)
gmsh.option.setNumber("Mesh.MshFileVersion", 2.2)

gmsh.model.add(name)

p1 = gmsh.model.geo.addPoint(0, 0, 0, h, 1)
p2 = gmsh.model.geo.addPoint(1, 0, 0, h, 2)
p3 = gmsh.model.geo.addPoint(1, 1, 0, h, 3)
p4 = gmsh.model.geo.addPoint(0, 1, 0, h, 4)

l1 = gmsh.model.geo.addLine(p1, p2, 1)
l2 = gmsh.model.geo.addLine(p2, p3, 2)
l3 = gmsh.model.geo.addLine(p3, p4, 3)
l4 = gmsh.model.geo.addLine(p4, p1, 4)

p5 = gmsh.model.geo.addPoint(0.25, 0.5, 0, hf, 5)
p6 = gmsh.model.geo.addPoint(0.75, 0.5, 0, hf, 6)
lf = gmsh.model.geo.addLine(p5, p6, 10)

gmsh.model.geo.addCurveLoop([l1, l2, l3, l4], 1)
(continues on next page)
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gmsh.model.geo.addPlaneSurface([1], 0)

gmsh.model.geo.synchronize()
gmsh.model.mesh.embed(1, [lf], 2, 0)

gmsh.model.mesh.generate(dim=2)
gmsh.write(name)
gmsh.finalize()

Fig. 10: horizontal.msh

4.7.3 tjunction.py

# A rectangle grid with a T-shaped junction

name = "tjunction.msh"
h = 0.1
hf = 0.05

import gmsh
gmsh.initialize()
gmsh.option.setNumber("General.Verbosity", 0)
gmsh.option.setNumber("Mesh.MshFileVersion", 2.2)

gmsh.model.add(name)

p1 = gmsh.model.geo.addPoint(0, 0, 0, h, 1)
p2 = gmsh.model.geo.addPoint(1, 0, 0, h, 2)
p3 = gmsh.model.geo.addPoint(1, 1, 0, h, 3)
p4 = gmsh.model.geo.addPoint(0, 1, 0, h, 4)

l1 = gmsh.model.geo.addLine(p1, p2, 1)
l2 = gmsh.model.geo.addLine(p2, p3, 2)
l3 = gmsh.model.geo.addLine(p3, p4, 3)
l4 = gmsh.model.geo.addLine(p4, p1, 4)

p5 = gmsh.model.geo.addPoint(0.25, 0.25, 0, hf, 5)
p6 = gmsh.model.geo.addPoint( 0.5, 0.5, 0, hf, 6)
p7 = gmsh.model.geo.addPoint(0.75, 0.75, 0, hf, 7)

(continues on next page)
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p8 = gmsh.model.geo.addPoint(0.75, 0.25, 0, hf, 8)

lf1 = gmsh.model.geo.addLine(p5, p6, 10)
lf2 = gmsh.model.geo.addLine(p6, p7, 11)
lf3 = gmsh.model.geo.addLine(p6, p8, 12)

gmsh.model.geo.addCurveLoop([l1, l2, l3, l4], 1)
gmsh.model.geo.addPlaneSurface([1], 0)

gmsh.model.geo.synchronize()
gmsh.model.mesh.embed(1, [lf1, lf2, lf3], 2, 0)

gmsh.model.mesh.generate(dim=2)
gmsh.write(name)
gmsh.finalize()

Fig. 11: tjunction.msh

4.7.4 vertical.py

# A rectangle grid with a vertical interface

name = "vertical.msh"
h = 0.1
hf = 0.1

import gmsh
gmsh.initialize()
gmsh.option.setNumber("General.Verbosity", 0)
gmsh.option.setNumber("Mesh.MshFileVersion", 2.2)

gmsh.model.add(name)

p1 = gmsh.model.geo.addPoint( 0, 0, 0, h, 1)
p2 = gmsh.model.geo.addPoint( 0.5, 0, 0, hf, 2)
p3 = gmsh.model.geo.addPoint( 1, 0, 0, h, 3)
p4 = gmsh.model.geo.addPoint( 1, 1, 0, h, 4)
p5 = gmsh.model.geo.addPoint( 0.5, 1, 0, hf, 5)
p6 = gmsh.model.geo.addPoint( 0, 1, 0, h, 6)

(continues on next page)
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l1 = gmsh.model.geo.addLine(p1, p2, 1)
l2 = gmsh.model.geo.addLine(p2, p3, 2)
l3 = gmsh.model.geo.addLine(p3, p4, 3)
l4 = gmsh.model.geo.addLine(p4, p5, 4)
l5 = gmsh.model.geo.addLine(p5, p6, 5)
l6 = gmsh.model.geo.addLine(p6, p1, 6)
lf = gmsh.model.geo.addLine(p2, p5, 10)

gmsh.model.geo.addCurveLoop([1, 10, 5, 6], 1)
gmsh.model.geo.addPlaneSurface([1], 0)
gmsh.model.geo.addCurveLoop([2, 3, 4, -10], 2)
gmsh.model.geo.addPlaneSurface([2], 1)

gmsh.model.geo.synchronize()

gmsh.model.mesh.generate(dim=2)
gmsh.write(name)
gmsh.finalize()

Fig. 12: vertical.msh

5 Python

In the following, we describe the additional python functionality that is not already part of Dune or dune-fem, and is
exclusively available for Dune-MMesh.

5.1 Grid construction

dune.mmesh.mmesh(constructor, dimgrid=None, **parameters)
Create an MMesh grid.

Parameters

• constructor – Grid constructor, e.g. (dune.grid.reader.gmsh, ‘grid.msh’) or
dune.grid.cartesianDomain([0,0],[1,1],[10,10]).

• dimgrid (int, optional) – The world dimension (must be 2 or 3). Might be guessed by
constructor.
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• **parameters – Additional parameters.

Returns An MMesh grid instance.

Examples

Creating simple structured grid:

from dune.grid import cartesianDomain
from dune.mmesh import mmesh
grid = mmesh(cartesianDomain([0,0], [1,1], [10,10]))

Using a .msh file:

from dune.grid import reader
from dune.mmesh import mmesh
grid = mmesh((reader.gmsh, "grid.msh"), 2)
igrid = grid.hierarchicalGrid.interfaceGrid

where grid.msh can be generated by gmsh [GR09]. For instance:

name = "grid.msh"
h = 0.1
hf = 0.01

import gmsh
gmsh.initialize()
gmsh.option.setNumber("Mesh.MshFileVersion", 2.2)

gmsh.model.add("name")

geo = gmsh.model.geo

p1 = geo.addPoint(0, 0, 0, h, 1)
p2 = geo.addPoint(1, 0, 0, h, 2)
p3 = geo.addPoint(1, 1, 0, h, 3)
p4 = geo.addPoint(0, 1, 0, h, 4)

l1 = geo.addLine(p1, p2, 1)
l2 = geo.addLine(p2, p3, 2)
l3 = geo.addLine(p3, p4, 3)
l4 = geo.addLine(p4, p1, 4)

p5 = geo.addPoint(0.25, 0.5, 0, hf, 5)
p6 = geo.addPoint(0.75, 0.5, 0, hf, 6)
lf = geo.addLine(p5, p6, 10)

geo.addCurveLoop([l1, l2, l3, l4], 1)
geo.addPlaneSurface([1], 0)

geo.synchronize()

gmsh.model.mesh.embed(1, [lf], 2, 0)
gmsh.model.mesh.generate(dim=2)

(continues on next page)
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gmsh.write(name)
gmsh.finalize()

5.2 Trace and skeleton

dune.mmesh.skeleton(interfaceFunction, grid=None)
Return the skeleton representation of a discrete function on the interface grid.

Parameters

• interfaceFunction – The discrete function on the interface grid.

• grid (Grid, optional) – The bulk grid. Necessary, if wrapped.

Returns Skeleton representation of given interface function.

Note: This function has to be restricted when evaluated on facets, e.g. using avg(skeleton).

dune.mmesh.trace(bulkFunction, igrid=None, restrictTo=None)
Return the trace representation of a discrete function on the bulk grid.

Parameters

• bulkFunction – The discrete function on the bulk grid.

• igrid (InterfaceGrid, optional) – The interface grid.

• restrictTo – already restrict the trace to ‘+’ or ‘-’ side

Returns Trace representation of a given interface function. This function has to be restricted to
positive (‘+’) or negative side (‘-‘).

5.3 Utility functions

dune.mmesh.domainMarker(grid)
Return domain markers passed by .msh grid file.

Parameters grid – The grid.

Returns Grid function with cell-wise markers from .msh file.

dune.mmesh.edgeMovement(grid, shifts)
Return linear interpolation of vertex shifts.

Parameters

• grid – The grid.

• shifts – List of shifts.

Returns Vector-valued grid function.

dune.mmesh.interfaceEdgeMovement(igrid, shifts)
Return linear interpolation of vertex shifts on the interface.

Parameters

• igrid – The interface grid.
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• shifts – List of shifts.

Returns Vector-valued interface grid function.

dune.mmesh.interfaceIndicator(igrid, grid=None, restrict=True)
Return indicator of interface edges.

Parameters

• igrid – The interfacegrid.

• grid (Grid, optional) – The bulk grid. Necessary, if wrapped.

• restrict (bool, optional) – If True, the returned UFL expression is restricted.

Returns Skeleton function that is one at interface edges.

dune.mmesh.normals(igrid)
Return normal vectors to the interface grid elements.

Parameters igrid – The interface grid.

Returns Grid function on the interface grid. Coincides with n(‘+’) of the bulk facet normal.

5.4 Coupled solve

dune.mmesh.iterativeSolve(schemes, targets, callback=None, iter=100, tol=1e-08, f_tol=None,
verbose=False, accelerate=False)

Helper function to solve bulk and interface scheme coupled iteratively.

Parameters

• schemes – pair of schemes

• targets – pair of discrete functions that should be solved for AND that are used in the
coupling forms

• callback – update function that is called every time before solving a scheme

• iter – maximum number of iterations

• tol – objective tolerance between two iterates in two norm

• verbose – print residuum for each iteration

• accelerate – use a vector formulation of Aitken’s fix point acceleration proposed by Irons
and Tuck.

Returns if converged and number of iterations

Note: The targets also must be used in the coupling forms.

dune.mmesh.monolithicSolve(schemes, targets, callback=None, iter=30, tol=1e-08, f_tol=1e-05,
eps=1.49012e-08, verbose=0)

Helper function to solve bulk and interface scheme coupled monolithically. A newton method assembling
the underlying jacobian matrix. The coupling jacobian blocks are evaluated by finite differences. We
provide a fast version with a C++ backend using UMFPACK.

Parameters

• schemes – pair of schemes
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• targets – pair of discrete functions that should be solved for AND that are used in the
coupling forms

• callback – update function that is called every time before solving a scheme

• iter – maximum number of iterations

• tol – objective residual of iteration step in two norm

• f_tol – objective residual of function value in two norm

• eps – step size for finite difference

• verbose – 1: print residuum for each newton iteration, 2: print details

Returns if converged

6 C++

In the following, we describe the additional C++ class member functions that are not already part of the DUNE grid
interface.

6.1 Grid

template<class HostGrid, int dim>

class Dune::MMesh
The MMesh class templatized by the CGAL host grid type and the dimension.

Public Functions

inline void addInterface(const Intersection &intersection, const std::size_t marker = 1)
Add an intersection to the interface.

inline bool isOnInterface(const Entity &entity) const
Return if entity shares a facet with the interface.

inline Intersection asIntersection(const InterfaceEntity &interfaceEntity) const
Return an interface entity as intersection of a MMesh entity.

inline const Entity locate(const GlobalCoordinate &p, const Entity &element = {}) const
Locate an entity by coordinate using CGAL’s locate.

inline bool markElements()
Mark elements for adaption using the default remeshing indicator.

Returns if elements have been marked.

inline bool ensureVertexMovement(std::vector<GlobalCoordinate> shifts)
Mark elements such that after movement of vertices no cell degenerates.

Parameters shifts – Vector that maps vertex index to GlobalCoordinate

Returns If elements have been marked.

inline void moveVertices(const std::vector<GlobalCoordinate> &shifts)
Move vertices.

Parameters shifts – Vector that maps interface vertex indices to GlobalCoordinate
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template<typename Vertex>
inline void addToInterface(const Vertex &vertex, const GlobalCoordinate &p)

Add a new interface segment and connect it with vertex.

inline const HostGrid &getHostGrid() const
Get reference to the underlying CGAL triangulation.

inline HostGrid &getHostGrid()
Get non-const reference to the underlying CGAL triangulation.

inline const InterfaceGrid &interfaceGrid() const
Get reference to the interface grid.

inline InterfaceGrid &interfaceGrid()
Get a non-const reference to the interface grid.

6.2 Entity

template<int dim, class GridImp>

class Dune::MMeshEntity<0, dim, GridImp>
The implementation of entities in MMesh.

Subclassed by Dune::MMeshCachingEntity< 0, dim, GridImp >

Public Functions

inline std::size_t domainMarker() const
Return domain marker of entity.

inline const HostGridEntity &hostEntity() const
Return the host entity.

inline HostGridEntity &hostEntity()
Return the host entity.

inline const GridImp &grid() const
Return the host grid.

inline IdType id() const
Return id computed by vertex ids.

6.3 InterfaceGrid

template<class MMesh>

class Dune::MMeshInterfaceGrid
Provides a DUNE grid interface class for the interface of a MMesh interface grid.
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Public Functions

inline const MMesh &getMMesh() const
Return reference to MMesh.

inline const HostGridType &getHostGrid() const
Return reference to underlying CGAL triangulation.

6.4 InterfaceEntity

template<int codim, int dim, class GridImp>

class Dune::MMeshInterfaceGridEntity
The implementation of entities in a MMesh interface grid.

Public Functions

inline bool isTip() const
Return if this vertex is a tip.

inline const MMeshInterfaceEntity &hostEntity() const
Return reference to the host entity.

6.5 Iterator Ranges

template<typename Vertex>
inline auto Dune::incidentElements(const Vertex &vertex)

Elements incident to a given vertex.

template<typename Vertex>
inline auto Dune::incidentFacets(const Vertex &vertex)

Facets incident to a given vertex.

template<typename Vertex>
inline auto Dune::incidentVertices(const Vertex &vertex, bool includeInfinite = false)

Vertices incident to a given vertex.

template<typename GridView, int codim = 1>
inline auto Dune::interfaceElements(const GridView &gv, bool includeBoundary = false)

All interface elements.

template<typename GridView>
inline auto Dune::interfaceVertices(const GridView &gv, bool includeBoundary = false)

All interface vertices.

template<typename Vertex>
inline auto Dune::incidentInterfaceVertices(const Vertex &vertex)

Incident interface vertices.

template<typename Vertex>
inline auto Dune::incidentInterfaceElements(const Vertex &vertex)

Incident interface elements.
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6.6 Indicator

template<class Grid>

class Dune::RatioIndicator
Class defining an indicator for grid remeshing regarding the edge length ratio. By default, we take 2x length
of the longest edge contained in the interface as maximal edge length and 0.5x length of the shortest edge as
minimal edge length.

Public Functions

inline RatioIndicator(ctype h = 0.0, ctype distProportion = 1.0, ctype factor = 1.0)
Calculates the indicator for each grid cell.

Parameters

• h – The objective edge length (aims at edge length in [h/4, 2*h]).

• distProportion – Cells with distance to interface of value greater than distProportion *
max(dist) are refined to . . .

• factor – . . . edge length in [factor * minH, factor * maxH].

inline void init(const Grid &grid)
Calculates minH_ and maxH_ for the current interface edge length and sets factor_ to maxh / minh.

inline void update()
Update the distances of all vertices.

template<class Element>
inline int operator()(const Element &element) const

Function call operator to return mark.

Returns 1 if an element should be refined, -1 if an element should be coarsened, 0 otherwise.

inline ctype maxH() const
Returns maxH.

inline ctype &maxH()
Returns reference to maxH.

inline ctype minH() const
Returns minH.

inline ctype &minH()
Returns reference to minH.

inline ctype &distProportion()
Returns reference to distProportion.

inline ctype &factor()
Returns reference to factor.
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6.7 Connected Component

template<class GridImp>

class Dune::MMeshConnectedComponent
The implementation of a connected component of entities in MMesh.

The connected component stores a list of connected entities providing geometrical information for the remeshing
step.

Public Functions

inline const std::list<CachingEntity> &children() const
Return list of caching entities in this component.

inline const std::size_t size() const
Return number of caching entities in this component.

template<class GridImp>

class Dune::MMeshInterfaceConnectedComponent
The implementation of connected components in a MMeshInterfaceGrid.

The connected component copies the vertex coordinates and ids.

Public Functions

inline const std::vector<CachingEntity> &children() const
Return list of caching entities in this component.

inline const std::size_t size() const
Return number of caching entities in this component.

The complete class documentation generated by Doxygen can be found here.

7 Known Issues

There are a few known issues that either just haven’t been implemented so far or need further clarification:

• Adaptation in spatial dimension three

• Topology change of interface (e.g. merging)

• MPI parallelization

There are a few known issues that either just have not been implemented so far or need further clarification.

The remeshing feature is not (yet) supported in spatial dimension three because the removal of a vertex is not offered
by the underlying CGAL triangulation class. In fact, it could appear that the region formed by its adjacent tetrahedrons
is an instance of the untetrahedralizable Schönhardt’s polyhedron. In this case, the removal of the vertex might be
impossible without rebuilding the whole triangulation.

We do not handle topology changes of interface (e.g. merging of two interfaces), yet. A simple intersection algorithm
for a tip crossing a second interface has been implemented, but other kinds of interaction of two interfaces need further
clarification on how to handle this interaction.

The Dune-MMesh grid implementation is no distributed grid such that solvers can be parallelized with MPI. For par-
allelization we rely on multi-threading features like the threaded Galerkin operator in Dune-Fem.
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9 Contribute
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